Relativistic effects in energy extraction from alpha particles
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The use in a tokamak of the recently reported relativistic two-gyrostream instability is investi-
gated. The concept is evaluated with respect to the extraction of energy from relativistic ions
in an inhomogeneous magnetized plasma by means of an electrostatic wave. For application
to energetic alpha particle channeling in a tokamak fusion reactor, the relativistic two-gyrostream
instability effects turn out to be relatively minor. @997 American Institute of Physics.
[S1070-664X97)03401-0

I. INTRODUCTION complishing the channeling of power from the energetic
particles also through the recently reported two-gyrostream

The amplification of plasma waves at the expense ofnstability discovered by Chen, which relies on a weakly
energetic alpha particles holds considerable promise forelativistic effect'=® This effect was explored in numerical
greatly improved operation of tokamak fusion reactors. Insimulations of homogeneous plasmas. The question to be
the absence of such plasma waves, the alpha particles slasettled is whether this relativistic anomalous slowing down
down primarily through collisions with electrons. These col-effect can be put to good use, either by itself or in conjunc-
lisions take place on a relatively long time scale, at leastion with other waves, in a tokamak geometry, where the
compared to collisionless processes; hence, there is opportmagnetic fields are necessarily not homogeneous. The con-
nity for tapping the energy of these particles through an in<clusion of this paper is that, unfortunately, interesting though
teraction with plasma waves. The tapped power is then charthe possibility was, these relativistic effects appear to be rela-
neled for use in other processes, such as to drive current or tvely minor in importance for application to extraction of
increase the fusion reactivity. power from alpha particles in a tokamak.

While there have been a number of wave candidates for The paper is organized as follows: In Sec. Il, the relativ-
achieving this collisionless slowing down of the alpha par-istic equations of motion are written and solved for a particle
ticles, it remains important to identify new wave candidatesthat interacts with an electrostatic wave in a magnetized ho-
particularly if new effects can be utilized. The impetus for mogeneous plasma. The two-gyrostream instability explored
the present study is the possibility of using the relativisticby Chent namely, that an instability may result in a uniform
two-gyrostream instability, recently explored by CHe#. plasma from the relativistic gyrophase bunching, is recov-

Wave interactions that tend to drive the alpha particles irered. In Sec. lll, the analysis is generalized to an inhomoge-
velocity space only tend not to extract most of the recoverneous plasma, where the relativistic effects are shown to be
able energy:® Waves that tend to release the particle  of relatively lesser importance. Section IV compares the dif-
power by diffusing thex particles in both energy and space fusion in particle energy to the directed drag on the particle
tend to be much more effective at recovering substantiagnergy. Section V shows that the relation between the guid-
amounts of energ§-® Waves in the ion cyclotron frequency ing center displacement and the energy change of the particle
range, such as the short-wavelength mode-converted idnolds without modification in the relativistic case. Section VI
Bernstein wavéhave been proved in tokamaks?and are  summarizes the main conclusions.
thought to be particularly effective for energy recovery. In
certain regimes, these waves can diffusparticles along a
path both in space and energy, such that energepiarticles
at the plasma center diffuse towards the plasma periphery as In a tokamak, arm particle interacting with a mode con-
they lose energy. The wave would then be convectively unverted ion Bernstein wave repeatedly encounters a wave re-
stable. gion, which is a vertical slab. In such a case, thearticle

Other wave candidates include spatially localized modestreams poloidally and toroidally along a magnetic surface.
in the ion cyclotron range of frequencitst® Such waves are  As it circles the magnetic axis poloidally, theparticle en-
already thought to be responsible for ion cyclotron emissiorcounters the region where the wave is intense. Due to the
from fusion product$®-*"However, it has been thought that, (majon radial dependence of the magnetic field in a toka-
to achieve the most substantial channeling of édhparticle  mak, the gyrofrequency of the particle varies significantly
power, it would be necessary to employ more than one kinaver its poloidal orbit. In addition, the horizontal wave num-
of wave. In fact, there appear to be advantages in employinger of the mode converted ion Bernstein wave is large and
one wave in the ion cyclotron range of frequencies and oneapidly varying as a function of horizontal position from the
lower frequency wavé® resonance. In the presence of the tokamak poloidal magnetic

The present work is motivated by the possibility of ac-field, it follows that the parallel wave number is also rapidly

II. EQUATIONS OF MOTION
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varying along the particle orbit. As a result, the particleand; is the value ofy before the particle interacts with the

streams in and out of resonance as it passes through the wawave.

field. We can solve Eq11) by assuming that the electric field
To describe a particle streaming in and out of resonance weak and expanding the particle coordinates and momenta

as it passes through the wave field, suppose that the magnetica power series with

field is uniform,B=e,B,, but consider an electrostatic wave

of finitg extent in the direction of the static field, e.g., with AE(J)—qJ dt’( ,)(J), (12
potential at
= ho(2)sin(kyx+ §(2) — wt). (1)  wherej denotes the order of the expansion. The change in

The change in the particle eneryas a result of the work energy to first order in the amplitude of the electric field is

done by the electric field is t
AEW = — qu dt’ ¢o(t')cogkx O+ £(2) 0 - wt'),

dE
A 4 @ (13

where, to zeroth order, the functiong,=p;;, ¢=¢; and
v=1;, are constant and so remain at their initglibscript )

which can be written also as

dE dg ¢y values. Using Eqg9) and (11), we find
G- 9 T9a 3 oo
t .
sinced/dt= 4/t +v-V, wherev is the particle velocity. The x@="1 Q + ?. |n(7+ bi |- (14
change in the particle energy over the complete finite region '
in which ¢ is nonzero is then Substituting this expression into E@.3), and expanding the
oy . integrand as an infinite sum of Bessel functions, we obtain
AE=f dt’ q ,:—f dt’ qwiyy cogkx+&(z) — wt'),
ot 1) wq ! ' ' ; ’
@) AEW == —= [ dt’ yo(t)In(Nexia(t’)+r]
n
wherex andz are functions ot. tec. (15

The energy transferred in one transit can be calculated
by solving the relativistic equations of motion, where

dpc_ Qex | 2Py a()=(n0/yi— w)t+E&2(1), (16
—+ , 5
dt mc y
KyC Py
dpy_ dey_ 2Py 6 Moo a7
dt mc vy’
and
dpz qe;
dt  mc’ @ _ kP
q tni. (19
for the dimensionless momentup=-w/c, wherec is the
velocity of light in vacuum, andy=(1-v-v/c®) "2 Also, The main contribution to the sum in E@15) comes
Q=qgBy/mc, whereq and m are the particle charge and from the resonant harmonic, for whichw/dt=0. In the fol-
mass. Since the electric field of the electrostatic wave, lowing we need keep only such resonant terms. Note, how-
e=—Vy, (8) ever, from Eq(15), that if the particle experiences a succes-

sion of kicks, each time entering the wave region with
has noy component, the canonical momentum in that direc-3ndom phase, on averageAEY is zero. The diffusion in
tion, energy due to these kicks is second order in the electric field.
For application to tokamaks, we assume that the particles
Pi=py+x o 9) indeed enter the wave region with random phase, either be-
cause of decorrelations introduced in the particle motion out-
is conserved. Using Ed9) to write the coordinate of the  side the wave region, or because the wave itself, being in-
location of the particle in terms gf, , we can write Eqst5)  jected from the tokamak periphery, is itself decorrelated.
and(6) as Decorrelations in the wave can result either intentionally
from randomly phasing the injected wave, or inadvertently

d Q Q d Ot . o
ﬁ+ipt(—— ¢) & exp{i —+¢ (10)  through the propagation of the injected wave through ran-
dt y v dtf mc Yi dom density fluctuations before reaching the resonant region
where of interaction. In any event, competing with the diffusion of
Ot the energy at second order in the electric field are coherent,
P, exp{ —i|—+a||=py+ipy, (12) or drag terms, also appearing to this order and which we now
Yi calculate.
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Since there are many wavelengths within the wave re- ' P [t L
gion we neglect the dependence ¢ on z, and, since xexd —i(a(t’)+r)]]+i Y2 J dt’ . (21)
kx®, &(z)V<7, we can write !
(2)
i = w o[ kXD + £(2)Dsin(k XD + £(2)(O — wt). The last term in Eq(21) arises from our retaining relativistic
thol Ky £(2)'V]sin(ky £(2) ) q g
at effects. Similarly, we calculate
(19
Expanding Eqs(9) and(11), we get
. Ot (1) b Vzi tdtl (1) a J (A)Jtdt,ft,dt',
xV=—_—— (pM+ip;¢pMexpi| —+¢| |+c.c, Yi my; ~"
20 vYi
(20 | dEz(t) )
X 1)~ coga(t") +1), (22

and, integrating Eq(10) and keeping only the resonant har-
monic n, we have

p§1>_ipti¢<l> where again we keep only the resonant harmonic.
Substituting the first order terms into EQ.9), keeping

_ ZCrI:C ftdt’ Ut [ 1 exli(a(t)+1)]+ 3,1 the resonant terms only, and averaging over the phase
get
|
| @ wqQio [ nky t nQ dé
- — __ % ’ H ' ' i ’ Y _2 0),, .
<(§t) oy, |~ op (M3 exqua<n]J‘dt o(t)exd —ia(t)]+i| =+ i (2(1) vy

x%z J2expia(t)) ftdt’ ft’dt”zpo(t”)exq— ia(t”)— '5 g—i (z(1)) @32 explia(t))

+c.c. (23

X ftdt’ ft,dt”dfo(t”) g—i (z(t"))© exg —ia(t"))

Here, the second term arises from the relativistic effect. Subwhere we defined the constant resonance mismatch as
stituting Eq.(23) into Eq. (4) gives the phase-averaged en-

. o2 nQ
ergy change to second order, and the main contributionto the 5= —— ) + kyv,;. (25)
integral comes from the region of stationary phase. Vi

Note that while the first order energy change phasefwhen not written explicitly, the argument of all Bessel

averaged vanishes, it contributes diffusively to second ordefynctions is\.) Similarly, using Eq.(23) in Eq. (12), we get
On the other hand, there is a nonvanishing phase-averaged

contribution in second order, which represents over time , ©(Qyo)? [ nke w®
constant deceleratiofor acceleration, for some energies AE?- my; v 6° Jndn[ 1= cog a0 ]+ cz ko
sometimes called the “drag” term. 5 )

Note also that the phase is stationary over the character- %" | 1— cog ot)— ot sin(4t) ] 26
istic width of a(t) nearda/dt=0, or 1/@,;\/d?£/dZ%). If the & 2

characteristic width of/y(2), i.e., the wave region, i§ then  rq repativistic effect is contained in the terms proportional
the condition) Jd”¢/dZ’ > 1, means that the time spent near w?/c?, which is the result calculated, in the lindt/dz—0

the stationary phase point is small compared to the transif.4 for ko=0, by Chert=3 As noted in Ref. 2, for certain

time through the wave region, and the effective wave— 5,65 ofs and other parameterAE®@ can be positive and

particle interaction is localized to this small regi_on. This IS arger in magnitude due to the relativistic effect than when
the case that we expect for the mode converted ion Bernsteiy, the nonrelativistic effects are retained. In the absence of
wave, where the wave number varies rapidly near the iong,ar effects AE@>0 for some range of parameters means
hybrid resonance layer. ) that certain waves are unstable in this limit.

In the opposite limit, namely where*¢/dz*—0, the To see this, note that the relativistic effect can dominate

wave—particle interaction is not localized. This is the limit of in the limit 5—0. but 8t finite. The ratio of this term to the
an homogeneous plasma. In this limit, saykoz, then from o014 divistic térm in Eq(26) is

Eq. (15 we have
(0?1K2c?) Qt(IN/NTY). (27)

i oqiod, . . The number of gyroperiod&t, is much larger than unit
(H__—~*7971 + _ +c.C. ) gyrop tr X g ) y.
AE 26 [expti(ot+r))—exin)]+c.c., (24 This term appears because the destabilizing term is propor-
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tional to the inverse of a higher power of the resonant pathe variable of integration frorto s, wheres®= £y 2t?, we
rameterd. In the configuration described in Refs. 7 and 8 thefind that the contribution to the integrals in Eq4.3) and
length of the region along the magnetic field lines in which(23) is mainly from|s|<1, or from a region around the reso-
the particles interact with the wave is about 400 cm. Eor nant point of a length smaller thangd’?. The magnitude of
particles of 3.5 MeV, the velocity amplitude is®f cm st & is of order &~A&/12, so that the size of the resonance
For half of the velocity parallel to the magnetic fieId, the region is Az,.e~l/(A&Y% The contribution to the energy

transit time is 8.810°’
0=2.4.10° s * for alphas, so that, for alpha@,~200. For
protons of 14 MeV, the velocity magnitude is 316°
cm s%, so thatQt,~100. The ratio27) is a product of this
large number and a small numb@?/kc?), while J,\/nJ,
is of orderA. For alphas\~10 and for protons\~20. The
number(w?k2c?), however, is 3.510 6 for w=1.7-10% and
k,=3 cm 1, the typical parameters in Ref. 7. The ratRy)
turns out to be approximately-Z0~2 for both alphas and

protons. Thus unfortunately, it seems that for most particles

s. In a magnetic field of 50 kG,

transfer is, by assumption only from a small resonant region.
Even if the wave amplitudé¢, changes on a scale length that
is comparable to the scale on whiglchanges, we may ap-
proximate ¢, by its value in the small resonant region, a
value that is approximately constant. Thus the stationary
phase approximation, where the variation of the wave num-
ber is more important than the variation of the amplitude,
applies®®

From Eq.(13) we find the energy change to first order,

the ratio(27) is smaller than unity, and therefore even in an AED = wquJ m eXF{ +c.C. (28)
homogeneous plasma the relativistic effect does not seem to 5
be dominant. Using
d
I1l. INHOMOGENEOUS PLASMA d_é; (Z(t))(0)=k0+2§ovzit, (29)
To consider the case of an inhomogeneous plasma, as-
sume again a localized wave—particle interaction. Changingq. (23) then becomes
|
(91/1 (2) wqw(z) nk)( ' L2 S ’ . N2
<(E) =— my, - o é/ZUzi JnJ;, exdis ]f ds’ exd —i(s')”]
i 2 wz 2 P2 S ’ s' i P UAYA
2§0v§, J;, b?—k0 expis®) | ds ds’ exp—i(s")?)
IJ2k S s’ .
aron s exp(is )J’ ds’f ds’s” exp(—i(s")?)
zi
iJ2 ( ® ko) s (s 1 & w?
+ ———|s exp(is? j ds’f ds’ exp(—i(s")? 32 b ——K3
&\ e vy s R=iE))= 2ew2 770 T P 0
S ’
Xexp(isz)f ds’fs ds”(s3—(s”)3)exr(—i(s”)z)) +c.c. (30)
|
The average change in energy is % s T
IlEJ dsJ ds’ co§s’—(s')?]= =, (32a
(2) J‘oo d alr// (2) — o0 — o 2
(AE)=q | ds||—-| ),
which can be evaluated as IZE fw dSJS ds’ JS' d¢’ Sir{SZ_(S//)Z]:O' (32b)
o(qPo)® [ nk, 1
AEPY=——S { —— 3 31— =
< > m’)’igovzi Ut it 2 % Ugzj I s s’ T
— ’ 1! i 2_ ("2 —
, w2 , 32k, o Kk l3= f_xdsj_wds f_mds’s sins*—(s")“] 7
xJs b?—ko I+ 02 13— J;, b?—v—u (320
1 él 2( 2 2)
X1 sJil b —=—Kkg5| s, 31 ° s ’ , T
4 20, go > S I4Ef dssf ds’fs ds’ sn’[sz—(s”)z]zz
where (320
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In an inhomogeneous plasma, use E&p) to get

lg= J_:dsj_:ds’ J_s;ds”(s3—(s”)3)c05{sz—(s”)2]

(wq‘/lo‘]n)zﬂ'
(AEW)A)=———7—, (39
37 (320 < ) 2é0v5,
4 to get
Detailed evaluations of these integrals are performed in Ap- N, 12 wt,
pendix A. Using the explicit expressions foy— 15, we ob- N3 A_§ (40
tain ¢
)2 13 Q ok The cancellation of the relativistic term to lowest order re-
(AE®)= «(Qkytho) 277 [ M ndn +32 5 ( “;_ 0) sults in reduction of the importance of the relativistic term by
20méguy; A " 2yik; Uzi the factorA¢. Sincekgv,i~w, usually wt,~A¢, so that the
3 ¢ w2 relativistic term has an effect smaller by/c? than the stan-
; 32— (b kZ)] (33  dard diffusion term. For the parameters in Ref. 7 the magni-
4%021 & "k tude of A¢ is about 40, and the rati@0) becomes 3.8.0°2

Note the vanishing of the term proportionalltpin Eq.(31),  for alphas and 0.0125 for protons.

which contains the destabilizing relativistic effects. It is of interest to note that in the nonrelativistic limit,
Using the estimate and wherk,=0 andv, is small,
2
& | d((AE)?)
=~z —=—=2(AE). 41
8 Ag (34) dE, (AE) (41)

we find that the ratio of the third term in the curly brackets i iN\, GUIDING CENTER DISPLACEMENT

(33) (the largest relativistic terjn to the first term in the

curly brackets is Note that the important relation between guiding center
®? Oty I\ displacement anq _thg energy change of the particl_es holds
22 RE 0y (35 not only nonrelativistically, but, more generally, also in the
kic® A& nJdy relativistic regime. To see this, make a Lorentz transforma-

If kov,i~Q, thenQt,~A¢ For tokamak plasmas, typically tion to a reference frame that moves with a veloait, ,

ko~0.1 cn'l, so thatAé~40. For the parameters in the dis- smaller tharc, in thex direction. In the moving frame, there

cussion following Eq(27), the ratio(35) becomes 1.710 4. is an additional component to the electric field

Thus the relativistic effect seems to be small and the domi-

nant drag term is the first term in the curly brackets in Eq.  E/=—y, ki Bo, (42
(33). In Appendix B, the drag for nonrelativistic particles is xC
derived in a way similar to that used by Chenal.,” who  where
find the drag in the zera limit, in which limit we recover 211
H w
their result. ?’rZJE[ 1— (E (43

IV. RELATIVISTIC DRAG In this moving frame the electric fields are static. Energy

Whereas the number of kicks required to extract all theconservation then yields
particle energy coherently i.=Ey/{AE), the number of o
kicks 2requirezd to extract energy by _ diffusion is E'+qypiho cod&'(Z') + kX' )+, o Boy’ = const,
Ng=Eg5/{(AE)“). Thus diffusion is dominant iN4<N,, or X (44)

if
where primed guantities are in the moving frame. The energy

% = LAEJ, (36)  transforms as
Ne ((AE)%)
is smaller than wunity. To lowest order, take E'=vy, E- ki mpx), (45
((AE)®)=((AE™)?) and (AE)=(AE®). In an homoge- xC
neous plasma, from E¢15), andy’'=y. Assume further that the wave exists in a finite
qlﬂ domain only. Using Eq44), the change in energy along the
((AEW)2y=2 0 ") [1—cog )], (37)  particle trajectory can be written as
mqQ p
so that -2 =
) AE K, c Q) (46)
N Uy
4.2 oty , (38)  The quantity in the brackets is thyecoordinate of the guid-
N, c? : : ) -
¢ ing center of the particle. Thus, the relation between guiding
which is 0.14 for alphas and 0.5 for protons for the param-center displacement and energy change holds more gener-
eters in Ref. 7. ally, namely, also in the relativistic regime.
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VI. SUMMARY

The effects associated with the two-gyrostream instabil-
ity do not appear to be important for the channelingaof
particle power by electrostatic waves in a tokamak. While
the calculations here do not take into account the full toroidal

g(s’)EJ_:ds exriisz)j__:,ds" exg —i(s")?]

+ ficds exqisz)ﬁ/ ds’ exd —i(s")?].

(A7)

geometry of the tokamak, in general, the relativistic effectsye write each term as a sum of two terms.
associated with the wave—particle interaction appear to be
smaller in an inhomogeneous magnetic field, such as occurs
in a tokamak, relative to similar effects occurring in a homo-
geneous magnetic field.

9(s') = f:ds exp(is?) f::'dg' ex] —i(s")?]

+ﬁds exp(isz)fiyds” exd —i(s")?]
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+ ffds exp(isz)fS' s’ ex{—i(s)%]. (A8)

APPENDIX A: EVALUATION OF SOME INTEGRALS .
Write | ; as
In this appendix we evaluate the integrals in E8Q). 1 = s o
Firstly we write Eq.(329 for |, as |3:4—_ f ds exp(isz)f ds’f(S ) d(s")?
I — 0 — 00 — o0
1 (= df
=5 J ds 3 f* +ce, (A1) X exf —i(s")?]+c.c. (A10)
Upon performing one integration we write the integral as
Where pon p g g g
s I lfmd OI1Ef*+ All)
: =— S—= c.C.
f(s)zf ds’ exdi(s')?]. (A2) 374 ) .7 7ds (
and therefore
Performing the integration we obtain that
v
T l3=—. Al12
1= Hi(s=)2=7. w3 973 A2
. L Similarly, write 1, as
We turn to the calculation df,. We write it as
1 0 ©
I I=.—f ds’f d(s?)exp(is?
l=5+c.c, (A4) T Sy (s%)exp(is®)
where xfs ds’ exg —i(s")2]+c.c. (A13)
o0 o] i S! i
IEJ ds’ f /ds eXp(ISZ)J ds’ exd —i(s")?], In a way similar to the way of finding the value bf we find
— s —oo
(A5) that
and we show that is real. In writing(A4) we inverted the |4:Z_ (A14)
order of integration in(32b). We now split the integration in 4
| to integration over positive and over negative values'of Writing |5 as

change the variable of integration to be positive only, and
therefore expresk as

1 o o ’
l5=5 j_xds’lesf_smds”(s3—(s”)3)

|=f ds’ g(s’), (A6) .

0 xexgi(s?—(s")?)]+c.c., (A15)
where and performing one integration, gives
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1 (> ) ) (s")? e=etiey. (B3)
|5=——J ds’| exp(i(s')9)| 1+ — S )
4 )= I In the nonrelativistic limit\=1, and the solution of EqB1)
12 is
st' ds exp(—is?)+exp(—i(s')?)|1— (s') Qe
Cw i p(ty)=exp —iQt,) f dt e expiQt)+p(ty) |.
to
- (B4)
XJ ds exp(is?)|+c.c. (A16)  The magnitude of the particle momentum is
s’ i ge 2
2_ 2 L i
We write the first integral oves as a sum of two integrals. [P(ty)*=[p(to)|*+ jto dt mc expl(ifdt)
The sum of the second of thogen the same interval as the .
. . . t 6
second mtegr_aland the secon_d integral gregs_,ubtrgctlon ofa n p(to)f 1dt q exp(— it +c.cl.
number from its complex conjugate, which is imaginary. We t, Mmc
are left with (B5)
lg=— 1 J'OO ds exp(isz)(l—isz)Jx ds exp(—is?)+c.c. In thg limit of a smallx, the.avera'g.e over of'the seconq
4 )= — term is zero. The first term is positive, denoting absorption.

(Al7)  Retaining resonant terms only, we write the first term as

Using a standard technique of performing the integral in the Qe _ 2 qko) 2 , ,
complex plane, we obtain f dt — expiQt)| = (-1t 3541
3 t, MC 2mc
ls=—— (A18)

2
X . (Bb6)

Jtldt explia(t))
to

APPENDIX B: THE NONRELATIVISTIC SMALL A LIMIT i i
Using Eq.(11) for the momentum, and assuming that at

Here, the drag for nonrelativistic partiCIeS is CalCUlatedt:to there is no wave perturbation' we write the second term
in a way similar to the way used by Chenal*°to find the  jn Eq. (B5) as
drag in the zero\ limit. Write Eqgs.(6) and(7) as

tq )
dp qe Qp p*(to)f dt cogkx+ £(z) — wt)exp(iQ2t)
—_—= i —, (B1) to
dt mc y
t
where = —ptif “dt kx sin(kx© — wt)exp(i( ¢+ Qt)).
. to
P=pxtipy, (B2) (B7)
and Using Eq.(21) and retaining only resonant terms, we obtain

v [ dt cogk ()= PuC ko [t ot
p (to)fto t cog Xx+§(z)—wt)emet)—mmfto t), At {30y il —i(at)+1)]

+Jns1 exd +i(a(t’)+r)]]
X[In—2 exdi(a(t)+r)]=Jdni2 exd —i(a(t)+r)]]
—[Jn-sexdi(a(t’)+r)]+Jdn

xexg —i(a(t")+r)]]1d[exdi(a(t)+r)]—exd —i(a(t)+r)]]}. (B8)
|
Averaging overr and taking the limits of integration to be Using (B6) and (B9), we now find
to=—o andt;=«, we obtain ,
m [ dkyiho
= ge* |P(t1)|2:|P(to)|2+4§—vz< n;(c ) [‘]ﬁ—l+‘]ﬁ+l
p(to)f dt o exp —iQt)+c.c. 0%z
- +5[Jﬁ12<n—1>_~1ﬁ+12<n+1>]
)\7T qudfo 2 2 )\ )\
:8§0U§i mc (In-1In-2=In+1dn+2tIn-1dy (B10)
—Jdns1)- (B9) Multiply by mc? to obtain the energy change,
144 Phys. Plasmas, Vol. 4, No. 1, January 1997 Fruchtman, Fisch, and Valeo

Downloaded-08-Apr-2005-t0-132.77.4.129.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pop.aip.org/pop/copyright.jsp



n2 ! °|. B. Bernstein, Phys. Rev.09, 10 (19598.

( )(q Keiho)? 5 )\ , (B11) 10H. Park, P. S. Lee, W. A. Peebles, and N. C. Luhmann, Jr
£l m 25, 1399(1985.
. _ _ 1IM. Ono, Phys. Fluids B5, 241 (1993.
\évf:]:rzggplgnéeneor:lc;g]%éh%be;:({; aﬁ?ht?ﬁ;;o&\?é;ht?yeg)gy 12R. Majeski, C. K. Phillips, and J. R. Wilson, Phys. Rev. L&, 2204
. (1999.
For A—0, this result reduces to the result obtained in Ref. 41°B. Coppi, S. C. Cowley, R. Kulsrud, P. Detragiache, and F. Pegoraro
Phys. Fluids29, 241(1986.

14B. Coppi, Phys. Lett. AL72, 439 (1993.
1K, R. Chen, Phys. Lett. A81, 308 (1993. 5 ' :
2K. R. Chen, Phys. Rev. Letf2, 3534(1994). R. O. Dendy, C. N. Lashmore-Davies, K. G. McClements, and G. A.
3K. R. Chen, W. Horton, and J. W. Van Dam, Phys. Plashad195 lBCottreII, Phys. Plasmak 1918(1994. )
(1994, K. G. McClements, R. O. Dendy, C. N. Lashmore-Davies, S. Cauffmann,
*D. J. Sigmar, irProceedings, Physics of Plasmas Close to Thermonuclear, G. A. Cottrell, and R. Majeski, Phys. Plasn&s543 (1996.

Conditions Varenna, Italy(Commission of the European Communities, Y'C. N. Lashmore-Davies and D. A. Russell,
Brussels, Belgium, 1979p. 271.

SW. R. Sutton I, D. J. Sigmar, and G. H. Miley, Fusion Tedh.374 pear in Phys. Plasmdgebruary, 1991
(1985.

18N. J. Fisch and M. C. Herrmann, Nucl. Fusi85, 1753(1995.
6N. J. Fisch and J. M. Rax, Phys. Rev. L&®, 612 (1992. 19T, H. Stix, Waves in PlasmagAmerican Institute of Physics, New York,
E. J. Valeo and N. J. Fisch, Phys. Rev. L&®, 3536(1994.

1992, p. 486.
8N. J. Fisch, Phys. Plasmas 2375(1995. 20, Chen, J. Vaclavik, and G. W. Hammett, Nucl. Fusi2®) 389 (1988.

., Nucl. Fusion

“Instability of the ion hybrid
wave in the presence of superthermal alpha-particles,” scheduled to ap-

Phys. Plasmas, Vol. 4, No. 1, January 1997 Fruchtman, Fisch, and Valeo 145

Downloaded-08-Apr-2005-t0-132.77.4.129.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pop.aip.org/pop/copyright.jsp



